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Abstract
Optimization of long-term production scheduling is important for managing the substantial cash flows
inherent in open pit mining ventures. In terms of ore grade, tons and quality, discrepancies between actual
production and planning expectations arise through uncertainty about the orebody. Traditional methods fail
to consider the risk of not meeting production targets caused by the uncertainty in estimated grades. These
aspects of uncertainty are integrated in a new optimization formulation for multielement production
scheduling, which also takes into account risk quantification, equipment access and mobility and other
operational requirements such as blending, mill capacity and mine production capacity. Furthermore, the
approach introduces the concept of orebody risk discounting. In a case study of an Australasian nickel-cobalt
laterite orebody, this new risk-based approach produced better results in meeting planned production targets
than traditional approaches.

Introduction
Production scheduling is a critical mechanism in the planning
of surface mining ventures. It deals with the effective manage-
ment of a mine’s production and cash flows in the order of
millions of dollars. Long-term production scheduling is used
to maximize the net present value (NPV) of the project and
focuses on the sequencing of materials to be mined in space
over time, under technical, financial and environmental con-
straints. The importance of incorporating uncertainty and risk
from the technical, geological and mining sources in mine
production schedules, particularly the possible in situ vari-
ability of pertinent orebody grade and ore quality characteris-
tics, is well appreciated. Discrepancies between planning
expectations and actual production may occur at any stage of
mining. For example, Vallee (2000) reported that 60% of the
mines surveyed had an average rate of production that was less
than 70% of the designed capacity in the early years. Others
(e.g., Rossi and Parker, 1994) reported shortfalls against
predictions of mine production in later stages of production.
These shortfalls were mostly attributed to orebody uncer-
tainty. Because traditional production scheduling methods do
not consider the risk of not meeting production targets caused
by grade variability, they cannot produce optimal results.

The detrimental effects of grade uncertainty and in situ
variability in optimizing open pit mine design are shown in
recent studies. Dimitrakopoulos et al. (2002) showed the
substantial conceptual and economic differences of risk-
based frameworks compare to the methods ignoring geologi-
cal risk. Dowd (1997) proposed a framework for risk integra-
tion in surface mining projects. Godoy and Dimitrakopoulos
(2004) presented a new approach for risk-inclusive cutback

designs, which yield substantial NPV increases. Ravenscroft
(1992) discussed risk analysis in mine production scheduling,
where the use of stochastically simulated orebodies showed
the impact of grade uncertainty on production scheduling.
Ravenscroft concluded that conventional mathematical pro-
gramming models cannot accommodate quantified risk, thus
there is a need for a new generation of scheduling formula-
tions to overcome infeasible or unrealistic scheduling and
account for production risk. Smith and Dimitrakopoulos (1999)
showed additional examples using mixed-integer program-
ming to verify the above conclusion in the context of short-
term planning. Kumral and Dowd (2001) used stochastic
simulations and optimization in short-term planning.

Past efforts to deal with uncertainty attempt to sequentially
link stochastic orebody models with conventional optimiza-
tion formulations, with the exception of Godoy and
Dimitrakopoulos (2004). This sequential process is inefficient
and, although it assesses risk in a schedule, it does not produce
optimal scheduling solutions in the presence of uncertainty. In
addition, these efforts do not consider multi-element deposits
with complex ore quality constraints, such as nickel laterites,
iron ore or magnesium deposits. Furthermore, dealing with
orebody uncertainty and in situ variability accentuates the
need to consider issues of equipment access and mobility in the
related “stochastic” optimization formulations.

In the above context, this paper presents a new, risk-based
production-scheduling formulation for complex, multielement
deposits. The formulation is based on expected block grades
and probabilities of grades being above required cutoffs, both
sets of values being derived from jointly simulated deposit
models (Dimitrakopoulos, 2002). Expected block grades and

Preprint number 03-151, presented at the SME Annual Meeting, Feb. 24-26, 2003. Original manuscript accepted for
publication February 2004. Discussion of this peer-reviewed and approved paper is invited and must be submitted to SME
Publications Dept. prior to Sept. 30, 2005. Copyright 2004, Society for Mining, Metallurgy, and Exploration, Inc.



SOCIETY FOR MINING, METALLURGY, AND EXPLORATION VOL. 316  •  TRANSACTIONS 2004107

probabilities are integrated with equipment constraints and
the practical feasibility of mining sequencing in a linear
programming model. This model typically considers homog-
enization and blending, mill and mining capacities and per-
forms multi-period optimization. A key effect of such a
probabilistic approach is that the more certain areas of the
deposit are mined in earlier production periods, leaving uncer-
tain areas for later periods, when additional information
usually becomes available. The probabilistic approach fol-
lowed in this paper introduces a technical link to the new
concept of “risk discounting” that explicitly integrates orebody
uncertainty in to production scheduling and, inevitably, project
valuation.

In the following sections, the new production-scheduling
formulation under conditions of orebody uncertainty is pre-
sented and combined with equipment constraints to generate
practical scheduling patterns. Subsequently, the formulation
is applied to a nickel-cobalt laterite deposit, elucidating the
practical aspects of the formulation. Next, the practical differ-
ences between this approach and the traditional scheduling
approach are discussed. Finally, the conclusions of this study
are presented.

Production scheduling under grade uncertainty
The mathematical programming model developed in this
section is based on linear programming (LP) and takes into
account the geological uncertainty and equipment mobility
and access required for scheduling and excavating mining
blocks. In this scheduling approach, a probability is assigned
to each block to represent the “desirability” of that block being
mined in a given period. This probability represents the
chances that a block will contain the desired grade and ore
quality and quantity, including ore grades above given cut-
offs, deleterious elements within required ranges, recovery
characteristics and processibility indexes. The probability is
calculated from simulated orebody models representing the
mineral deposit (e.g., Dimitrakopoulos, 2002). This model
can be easily extended to a mixed integer programming (MIP)
model (Ramazan, 2001) simply by defining the variables as
binary instead of linear, as needed. The model contains an
objective function and a set of constraints as follows:

Objective function. The objective function formulation is
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where
pmax is the total time period for scheduling,
nblock is total number of blocks in the model;
Y1t is the percent deviation from having 100% probability

that the material mined in period t would have the
desired properties; and

C1
t is the cost coefficient for the probability deviation in
period t, such that C1

1 > C1
2 > C1

3 > ... > C1
pmax.

Discussion of C2, C3 and Y2, Y3 is deferred for a subsequent
paragraph. In the presence of orebody uncertainty, a number
of blocks will have a probability of less than 100%, and thus
the schedule will have a deviation from this target probability.
This deviation can be seen as the risk of not meeting produc-
tion targets for the related parameters and has a cost for the
objective function. Costs for the objective function are set so
that a unit of deviation is more costly in the first period than

in the second period, which is higher than the third period, and
so on. Thus, the objective function will find the blocks with the
highest probabilities for the first period, lower probability
blocks for the second period, and so on.

Coefficient variables C2, and C3 are cost coefficient vari-
ables for Y2 and Y3 percent deviations from mining targets,
relating to the smoothness of the mining operation. More
specifically, Fig. 1 shows mining blocks and two concentric
windows that move as the central Block i moves. The optimi-
zation model is set to mine Block i together with the blocks
within the inner (smaller) window. If all the blocks within the
inner window cannot be mined out, the tonnage of the blocks
that cannot be mined is a “deviation” referred to as Y2 in
percentage, and each percentage costs C2 for the objective
function. The mining blocks within the outer (large) window
will be mined, if possible, and Y3 and C3 correspond to the
related deviation and cost. The smoothing formulation can
ensure minimum mining width for the available equipment
access and mobility. If C2 is set equal to C3, the objective
function will be penalized twice for the deviation of the inner
window compared with once for the outer window. This setup
means that when Block i is mined it is more desirable to mine
it together with the neighboring blocks (in the inner window)
than the blocks farther from it (outer window). But it is even
better for smoothness of mining, to mine the farther blocks too
with Block i, if feasible.

The model in Eq. (1) requires suitable cost coefficients
(C1

t) for deviations from 100% probability and a smooth
schedule, and these are derived through a trial-and-error
approach as follows. At the start, a low cost penalizes the
deviation from the smoothness in Eq. (1) to result in a widely
spread mining pattern for various periods, while the probabil-
ity will be expected to be relatively high in the first period.
Incremental cost increases over time will lead to a required
mining width and suitable equipment access in the schedule.
This schedule is considered as optimum for maximizing
probabilities, given the degree of the smoothness obtained.

The objective function in Eq. (1) does not directly maxi-
mize net present value (NPV). Rather, it opts to provide a
feasible scheduling pattern and ensure a desired grade and
quality of the ore produced. The reason is that feasible sched-
uling patterns and the amount of ore having the desired quality
to be sent to the mill need to be priorities, indirectly leading to

Figure 1 — Inner and outer windows around Block i are set
up to establish a smooth schedule for equipment access
and a required mining width. (Solid lines show windows;
dotted lines show blocks).



TRANSACTIONS 2004  •  VOL. 316 SOCIETY FOR MINING, METALLURGY, AND EXPLORATION108

a practically maximum NPV that is realistic. Otherwise, the
generated NPV would only be optimal in the mathematical
sense and not in mining practice. Furthermore, the risk of
producing adequate ore having the desired properties is inte-
grated in the process, to maximize the chances of delivering to
the mill the amount and quality of ore required during mining
operation. Risk minimization and feasible patterns result in
practically maximum NPV.

Model constraints. The proposed scheduling optimization
model in Eq. (1) contains a series of constraints. These include
probability targets and equipment accessibility and mobility,
as well as the more traditional constraints of grade blending
mill requirements, mill capacity, upper and lower bounds for
ore quality parameters, mining capacity and others that de-
pend on the conditions of the given mine, such as stripping
ratio and wall slope. The constraints considered here and used
in the subsequent case study are as follows.

Probability constraints.
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where
Pi is the probability of Block n having a grade within a

desired interval, Pi ≤ 100;
the constant 100.0 is the target probability for the schedule;
OTi

t is the ore tonnage scheduled from Block i to be mined
in Period t;

TO is a constant number representing total ore tonnage to
be scheduled in Period t; and

Y1t is the percent deviation from the probability target at
Period t.

Note that Y1t is penalized at a rate of C1
t in the objective

function. In the first period, each unit of Y11 will cost C1
1, a

unit Y12 will cost C1
2 and a unit Y13 will cost C1

3 for the
objective function. Because the objective function is a mini-
mization, the blocks with the highest probabilities will be
scheduled in the first period to have the minimum possible
C1

1*Y11 due to the fact that C1
1 is larger than C1

2 and C1
3.

Constraints for equipment access and mobility. The two
windows discussed in the previous section (Fig. 1) are used to
set up the objective function and constraint formulations.
Constraints for the inner window and for mining Block i at
Period t are
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where
K1j = 1/TOj and K2i = nb1/TOi are the coefficients to

convert ore tons to percentage;
TOj is the total ore tonnage available in mining Block j;
nb1 is the total number of blocks within the inner window

excluding the central block, which is eight in the Fig. 1;
and

Y parameters are deviations from smoothness for this inner
window.

The constraint formulation for the outer window is similar
to the inner window
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where
Y3 parameters are the equivalent to Y2 parameters the outer

window and
nb2 is the total number of blocks within the outer window.

In this case, K2i= nb2/TOi.

Grade blending constraints. Upper bound constraints re-
quire the average grade of the material sent to the mill to be
less than or equal to a certain value, Grmax
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where
Gri is the average grade of Block i.

Lower bound constraints require the average grade of the
material sent to the mill to be greater than or equal to a certain
value, Grmin

  Gr Gr OTi i
t

i

nblock

−( )








 ≥

=
∑ min *

1

0 (6)

where
t = 1, 2, …, pmax.

Reserve constraints. The set of reserve constraints is used to
require all the available ore tons in a block to be mined. The
following formulations are written for each block.
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where
i = 1, 2, …, nblock.

Processing capacity constraints. Processing is constrained
by the maximum production capacity of the plant (PCapmax)
and the minimum production requirement (PCapmin). These
upper and lower bounds are necessary to ensure a smooth feed
of ore to mill.

  • Upper bound constraints for each period:

OT PCapi
t
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  • Lower bound constraints for each period:
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t

i

nblock

≥
=
∑ min

1
(9)

Mining capacity constraints. Mining capacity constraints
represent the actual available equipment capacity (MCapmax)
during each production period and are
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where
WTi

t is the waste tonnage scheduled
from Block i to be mined in Period t.

Production scheduling under
uncertainty in a Ni-Co laterite
deposit
The case study considers a part of a typi-
cal laterite nickel deposit in Australasia.
The deposit is expected to produce around 30,000 t (33,000 st)
of nickel metal and 3,000 t (3,300 st) of cobalt metal per year,
with a mine life estimated to exceed 20 years. The operation
is expected to recover high-purity nickel and cobalt by elec-
trowinning. Important metallurgical issues are the response of
the ore to pressure acid leaching, given the magnesium and
aluminum content in the ore being processed and the forecast-
ing of acid consumption in the mill due to this content.
Orebody variability and uncertainty are considered critical in
achieving “multivariable” mine optimization and production
scheduling.

Deposit models and constraints. The geology of the orebody
shows a layer of waste material on top of limonite and
saprolite layers, here combined to a zone (LS), with rocky
saprolite (RS) below. Both LS and RS may contain high-grade
nickel. For classification of ore and waste, the cutoff grade is
set at 0.5% Ni. The deposit is characterized by seven at-
tributes: Ni, Co, Mg and Al grades, volume of percent rock
(Vol%R), thickness of LS and thickness of RS. The main
mineral considered for profit in this project is nickel. Cobalt
is a byproduct with limited contribution to overall mine cash
flows. Magnesium and aluminum are relevant to the acid
consumption at the processing plant and have a major influ-
ence on processing costs.

For the purpose of scheduling, the deposit is represented by
2,030 blocks, each 40 x 40 m (130 x 130 ft). An orebody model
is generated using the technique of joint conditional simula-
tion, as detailed below. The model comprises total tonnage,
economic value, % tons of the LS layer, % tons of the RS layer
at -2 mm, Ni, Co, Mg, Al, volume % rock and % total ore tons
(% tons of LS + % tons of RS at –2mm) within each block.

The seven deposit attributes mentioned above are simu-
lated, jointly and conditionally, using a 5 x 5-m (16 x 16-ft)
grid for 35 realizations. The 5 x 5-m grids are then reblocked
to the 40 x 40-m block size. Each set of joint simulation
models generated is equally likely to be the real deposit, given
the available information. The joint conditional simulation of
these attributes is based on the so-called simulation with
minimum/maximum autocorrelation factors. This is an ap-
proach that spatially decorrelates the variables involved to
noncorrelated factors. The independent factors are individu-
ally simulated and back-transformed to the conditional simu-
lations of the correlated deposit attributes that reproduce the
cross-correlations and individual correlations of the original
variables (Desbarats and Dimitrakopoulos, 2000). Simulated
representations of the orebody are used to generate average
block grades and probabilities of values of different attributes
to be within given ranges of interest and as needed for the
scheduling optimization formulation in the previous section.

This study considers that ore material sent to the processing
plant during each production period should have an average

Ni grade in the range of 1.3 ± 0.1%. The probability of each
block having the Ni grade in the desired feed range for the mill
is used to minimize the geological risk in mine optimization,
as discussed earlier. The total ore tonnage, total tonnage, total
undiscounted economic value, average Ni, Co, Mg and Al
grades in the simulation based model (SM) and the probabili-
ties are shown in Table 1, together with the corresponding
values for a traditional model (TM) discussed in a subsequent
section.

The lower and upper bound constraints on Ni grade for
each period are 1.2% and 1.4%, respectively. Ore production
is limited to between 9.5 and 10 Mt (10.5 and 11 million st) per
period, because the scheduling model is designed over a
period of three years and average periodical ore tons is around
9.64 Mt (10.6 million st). Overall, average Mg and Al are
around 4.5% and 0.6%, respectively. Minimum and maxi-
mum periodical ranges are selected as 4.0% to 5.0% for Mg
and 0.6% to 0.7% for Al. Following established practices, the
economic value of each block is calculated to include clear-
ance, mining, processing and administration costs, recovery
and price for Ni and Co, overburden and suitable densities.

The steps followed in this project can be summarized as:

• Step 1: Provide jointly simulated models of the deposit
attributes of interest: Ni, Co, Mg, Al, Vol%R, thickness
of LS, and thickness of RS.

• Step 2: Assign probabilities to each block for a Ni grade
between the desired bounds (1.2% and 1.4%) from the
jointly simulated models of the deposit in Step 1.

• Step 3: Generate the orebody SM by averaging the joint
simulations in each scheduling block.

• Step 4: Schedule the orebody SM using the formula-
tions in Eqs. (1) through (10).

• Step 5: Quantify the risk in the optimal production
schedule using the jointly simulated, equally probable
deposit models of pertinent attributes in Step 1.

Application. The production scheduling results obtained by
applying the optimization formulation in Eq. (1) and con-
straints in Eqs. (2) through (9) to the orebody SM of the Ni
laterite deposit (Table 1) are shown in Fig. 2 and summarized
in Table 2. The table includes ore and total tonnages mined,
undiscounted economic value (UEV) and NPV and average
grades per scheduling period. In the schedule, UEV is higher
for the first period than the second period ($543 million
compared with $536.5 million) and is highest in the last period
($561 million). The total UEV is estimated to be around
$1,640 million. Although the economic value is high in the
last year, the probability of meeting the required average
grade is low, reflecting high risk in achieving the planned
metal production in the last period. At about $503 million,
NPV is the highest in the first period, and decreases to about

SM 28.91 47.45 1,640.56 1.29 0.090 4.50 0.58

TM 28.83 48.32 1,655.20 1.30 0.088 4.70 0.67

1Ore represents ore tonnage
2Tonnage is total tonnage
3Total undiscounted economic value

Ore,1 Tonnage,2 UEV,3 Ni, Co, Mg, Al,
Model 106 t 106 t $106 % % % %

Table 1 — Average values in the simulation-based model (SM) and traditional
model (TM).
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$445 million in the last period. Total project NPV is about
$1,408 million, which is less than 2% different from the
optimization using an objective function directly maximizing
NPV.

As shown in Table 2, the schedule has the highest probabil-
ity to achieve the desired properties of the ore produced in the
first year (88.3%), a lower probability in the second year
(84.3%) and the lowest in the last year (78.83%), exactly as
intended in the scheduling optimization model. This shows
that the available risk of not achieving the production targets
could be distributed over the different time periods by control-
ling their costs in the objective function. In the present case
study, an 8% “risk discount rate” is used to discriminate the
costing between time periods. This risk discount rate can be
viewed as a parameter controlling the “orebody/grade” risk

distribution over time, which is distinctly
different from the discount rate conven-
tionally applied to economic values. If a
higher rate is used, the differences in the
probabilities between different periods
are expected to be higher.

Table 2 shows that the LP model is
scheduling a little over 9.5 Mt (10.5 mil-
lion st) of ore in the first period, barely
satisfying the processing minimum ca-
pacity constraint. This low rate in the ore
production leads to lower NPV at the end
of the first year. The reason for this is that
the objective function is refusing to mine
the ore tonnage with lower probabilities

to meet the grade requirements; this refusal is because of the
relatively high cost assigned for probability deviation factors
in the objective function. The reduction of the cost of prob-
ability deviations will result in the LP model producing more
ore tonnage with higher NPV at the end of first production
period. However, the probability of meeting production tar-
gets would be lower. Thus, if the decision maker is willing to
tolerate additional risk, the cost on the deviations of the
probabilities can be reduced. This example suggests a tradeoff
between risk and targets as well as between NPV and the
utility of risk quantification.

Additional characteristics of the mine production schedule
include the effect on the project economics of small variations
in the average Ni grade, as well as the average grade of Co, Mg
and Al, in the three production periods. The LP model did not
produce significant partial block mining, because the costs of
deviations are different between periods. Almost 8% of the
blocks were partially mined, with most of the 8% scheduled in
a single period.

Figure 2 shows the scheduling patterns generated from the
proposed LP model. They suggest that the scheduled blocks
can be mined at two faces. The production schedule allows
equipment access and mining in a continuous manner once
mining is started from a certain location. For example, during
the first year, some equipment may start mining downwards
from the top of the deposit, while other equipment may start
mining the bottom part of the first year’s scheduling pattern
and mining upwards before moving to the small patch on the
left side of the deposit. The second and third years’ scheduling
patterns are also easy to mine continuously.

Comparison of risk-based and traditional optimal sched-
uling. In this section, the production schedule generated in the
previous section is compared with the schedule generated by
a traditional approach (TM). The TM uses an estimated model
of the deposit (as summarized in Table 1), commonly gener-
ated through an approach such as kriging (David, 1988). The
scheduling optimization does not include probabilities and the
corresponding penalties for related deviations. Figure 3 shows
the optimal production schedule for TM, and Table 3 summa-
rizes the results.

In Table 3, the probabilities of meeting the schedule are
calculated by comparing the TM schedule with each of the
equally possible SM representations of the deposit, in a way
similar to Step 5 in the previous section. Evidently, the effect
of not factoring risk in the scheduling optimization formula-
tion generates lower probabilities for meeting production
targets. Furthermore, the nonuse of orebody “risk discount-
ing” leads to the ordering of probabilities being the reverse of
that of the SM schedule. In the TM schedule, the probability

Figure 2 — Production scheduling results incorporating
orebody risk and equipment access (from SM).

Table 2 — Summary results of production scheduling using the simulation-based
model (SM).

Periods, Ore, Tonnage, UEV,1 NPV, Ni, Co, Mg, Al, Prob.,2

years 106 t 106 t $106 $106 % % % % %

1 9.53 14.98 543.03 502.81 1.28 0.091 4.23 0.62 88.29

2 9.58 16.25 536.53 459.99 1.30 0.090 4.65 0.53 84.28

3 9.81 16.22 561.00 445.34 1.31 0.090 4.60 0.59 78.83

Tot/avg3 28.91 47.45 1,640.56 1,408.14 1.30 0.090 4.50 0.58 83.75

1Total undiscounted economic value.
2Probability.
3Total of columns for tonnage and economic values and averages for the remaining columns.
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of achieving the desired properties of the
ore produced is lowest in the first year
(82.2%), higher in the second year (82.9%)
and highest in the last year (85.6%). This
trend is usually not desirable, as it is
expected that more information will be
available as a result of experience gained
with the deposit as the mining operation
proceeds. Uncertainty in the riskier areas
would therefore be expected to decrease,
enabling a decision maker to improve
decisions on short-term production sched-
uling and blending processes in the fu-
ture. In addition, the objective is usually
to secure production characteristics at
early stages of a project, so as to secure cash flows and loan
repayment, as well as improve overall financial aspects of a
project.

In comparing the scheduling patterns of TM in Fig. 3 and
SM in Fig. 2, the SM scheduling pattern appears practical for
mining in two phases, whereas the TM pattern is spread over
the deposit and does not appear feasible in practice. This is a
common concern with traditional MIP/LP scheduling models.
The spread of scheduling patterns in Fig. 3 means that mining
equipment would need to be moved often in a given period. In
addition, mining blocks may not provide access to equipment,
as may be the case for the blocks on the top and center part of
the deposit scheduled for the second period. Either their
excavation will have to be in the third period or other blocks
scheduled for later periods will have to be mined first in order
to reach them. These issues are not considered in traditional
optimization. The changes that are not considered by the MIP
optimizer in an operation may cause infeasibilities in the
model constraints and in terms of ore tonnage, grade and
quality and sub-optimal NPV or in a NPV that will not
materialize.

Figure 4 summarizes the comparison of the risk-based
(SM) and traditional (TM) formulations, showing the aver-
age deviations per mining period from expected “optimal”
production targets, and the probability of deviations in ore
production per mining period occurring. The values plotted
in the figure are generated by calculating the deviations of
each schedule with respect to the 35 jointly simulated orebody
models. Figure 4 (a) shows the average of these deviations.
Figure 4 (b) is obtained by finding the ratio of the number of
models in which the ore tonnage constraints are violated to
the total number of simulated orebody models. There is little
difference in the first year in the probability of deviation
occurring and the amount of deviations between two meth-
ods. TM produced slightly lower deviations in ore produc-
tion for the first year. This is because of that the proposed LP
model’s objective function doesn’t only optimize in mini-
mizing the deviations, but also considers the feasibility of
mining patterns in optimization. During the second year of
production, the risk-based SM schedule has about 28%
(100,000 t) less deviation in expected ore production com-
pared with the traditional schedule. Furthermore, the prob-
ability of deviation in ore production occurring is around
10% less than in the traditional schedule as shown in Fig. 4.
The ore tonnage is directly related to Ni grades, and increas-
ing the probabilities to meet Ni grade constraints increases
the chance of producing the required ore tons. There are no
significant deviations in grades, which means that grade
constraints are not as tight as processing capacity con-
straints. The proposed risk-based LP schedule performs

substantially better than the traditional schedule when com-
paring the overall deviations in ore production during the
first two periods that the LP model considers.

Conclusions
This paper presents a new, risk-based optimization formula-
tion for long-term production scheduling in open pit mines. It
is particularly suitable for complex, multielement orebodies,
such as Ni laterites, iron ore and magnesium mines. The
mathematical programming formulation integrates orebody
uncertainty in respect of grade, ore quality and quantity and
risk quantification as well as equipment access and mobility
and other typical operational requirements.

A key part of the formulation is that it is based on the
probabilities of grades of different elements to be above

Figure 3 — Production scheduling results from the
traditional scheduling approach (TM).

Table 3 — Summary results of production scheduling using the traditional model
(TM).

Periods, Ore, Tonnage, UEV,1 NPV, Ni, Co, Mg, Al, Prob.,2

years 106 t 106 t $106 $106 % % % % %

1 9.78 14.98 660.89 611.94 1.394 0.104 4.327 0.666 82.19

2 9.66 15.77 555.51 476.26 1.292 0.088 4.812 0.741 82.91

3 9.44 17.56 438.85 348.37 1.210 0.072 5.023 0.621 85.59

Tot/avg2 28.83 48.32 1,655.2 1,436.57 1.300 0.088 4.718 0.676 83.55

1Total undiscounted economic value.
2Probability.
3Total of columns for tonnage and economic values and averages for the remaining columns.
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relevant cutoffs or within a given range. This provides the
opportunity to:

• Generate schedules that aim to reduce risk at early
production stages when secure cash flows are most
critical. And later production periods will benefit from
additional information that becomes available as min-
ing operations proceed.

• Explicitly set up the approach to reduce risk in meeting
production expectations.

• Introduce the concept of an “orebody risk discount rate”
that can account for orebody uncertainty and be used in
combination with the common approach of employing
discount rates in dealing with mining project uncer-
tainty.

• To generate production schedules with feasible mining
patterns, the formulation is coupled with equipment
accessibility and mobility constraints, which aim to
minimize inefficiencies in the utilization of mining
equipment.

The practical aspects of the risk-based approach were
shown in an application at a Ni-laterite deposit. Relevant
attributes and input to the scheduling formulation (Ni, Co, Mg
and Al grades, volume of percent rock, thickness of layer LS
and thickness of layers) were jointly simulated, conditional to
all available drilling information. Thirty-five equally possible
simulated representations of the deposit were used to generate
probabilities and averages for the optimization, as well as
quantify the risk in meeting production schedules.

The comparisons of the results with traditional long-term
production scheduling based on NPV optimization verifies
the expectations for the new risk-based formulation that risk
in meeting production targets is minimized and risk is lower
in the first period, than the second and so forth. In addition,
the scheduling patterns generated from the proposed ap-
proach are feasible and superior to those from the traditional
optimization.

Although the proposed approach is not set up to explicitly
maximize NPV, it generates a realistic NPV, which is the best
under the scheduling considerations. It is obvious that NPV
can be increased by forcing the probabilistic LP model to mine
high-grade blocks in the early periods through the use of high
and tight grade constraints in those periods. However, in-
creasing NPV will generally increase the risk of not meeting

production targets. The traditional model shown in this study
produced 2% higher total NPV due to the high cash flows in
the first scheduling period of the model. However, the risk of
not meeting production targets in the first period was about
6% higher than for the proposed risk-based LP model. There
are also the practical mining issues mentioned above to take
into consideration.

Future work could consider additional testing as well as a
more direct integration of orebody uncertainty in production
scheduling formulations. This LP model needs to be extended
to other three-dimensional deposits with large vertical exten-
sions.
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